您现在的位置是:主页 > 数据库技术 > 数据库技术

PCA中的误差表示方法是什么

IDCBT2022-01-04服务器技术人已围观

简介本篇内容主要讲解“PCA中的误差表示方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PCA中的误差表示方法是什么”吧

本篇内容主要讲解“PCA中的误差表示方法是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“PCA中的误差表示方法是什么”吧!

给定nm维样本X­(1), X(2),…,X(n),假设我们的目标是将这n个样本从m维降低到k维,并且尽可能保证这种降维的操作不会产生很大的代价(重要信息的丢失)。换句话说,我们要把n个样本点从m维空间投影到k维空间。对于每一个样本点,我们都可以用下式表示此投影过程:

        Z=ATX                                                                       (1)

其中X是m维样本点, Z 是投影后得到的k维样本点,A是一个 m * k 的矩阵。

回顾一下,如果采用主成分分析法(PCA)来进行降维的话,我们首先求出样本的均值:

再求出散布矩阵(scatter matrix):

                                                               (2)

例子: 为了更直观地从几何上理解式(1)的含义,我们以一组2维数据作为例子,在这个例子当中,我们使用PCA的方法将这组2维数组降到1维。矩阵A所存储的这些特征向量,实际上降维后的是新坐标轴,而在这个例子当中,我们得到的是一个新的1维坐标轴。如图1所示,图中的红色叉点代表2维样本点垂直投影到这个新坐标轴上的点。对于每一个2维空间上的样本点X,只要我们将它代入式(1)就可以计算出其降维后的表达(在这个例当中,则是一个1维的向量,即一个值):

                            

                                            图1  10个样本点在2维空间上的表达


而式(3)算出来的这个值,实际上是这些投影点离原点的距离。因此,我们可以画出一个数轴来表示这个新的坐标轴,再根据式(3)算出来的这些值,在数轴上标出它们的位置,如图2所示。

                                                    (4)

为了理解式(4),我们首先需要理解AATX(i)。回顾刚刚所说的,计算ATX(i)所得到的,实际上是样本点在低维空间上的表达(参考图2)。相对而言,X(

标签:

很赞哦! ()

本栏推荐