您现在的位置是:主页 > 数据库技术 > 数据库技术

mapreduce wordcount怎么理解

IDCBT2021-12-31服务器技术人已围观

简介这篇文章主要介绍“mapreduce wordcount怎么理解”,在日常操作中,相信很多人在mapreduce wordcount怎么理解问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解

这篇文章主要介绍“mapreduce wordcount怎么理解”,在日常操作中,相信很多人在mapreduce wordcount怎么理解问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”mapreduce wordcount怎么理解”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

wordcount统计个数,在看代码时总是能看懂,但是真正的逻辑反而一直不明比,比如map端时怎么处理,reduce时又是怎么处理的,现在明白了。

原理是这样的,map端时读取每一行数据,并把每行数据中的一个字符统计一次,如下:

map 数据 {key,value} :

    {0,hello word by word}

    {1,hello hadoop by hadoop}

上面就是map端输入的key与value,在map端处理后会生成以下数据:

   {hello,1} {word,1} {by,1} {word,1}

    {hello,1} {hadoop,1} {by,1} {hadoop,1}

当看到这时大家都能明白,但是在reduce端时,就怎么也看不明白了,不知道是怎么对字符做统一的,再下通过对hadoop原理的分析得出在到reduce端时,会对map端发过来的数据进行清洗,清洗后的数据应该是以下结构:

[{hello},{1,1}] [{word},{1,1}] [{by},{1,1}] [{hadoop},{1,1}]

然后输入到reduce端,reduce会对每一个values做循环操作,对数据进行叠加,并输出到本地,具体代码请继续欣赏,不做多过解析。

public class WordCount extends Configured implements Tool{
 public static class Map extends Mapper<LongWritable,Text,Text,IntWritable>{
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();
  public void map(LongWritable key,Text value, Context context)
  throws IOException,InterruptedException{
   String line = value.toString();
   StringTokenizer tokenizer = new StringTokenizer();
   while(tokenizer.hasMoreTokens()){
    word.set(tokenizer.nextToken);
    context.write(word,one);
   }
  }
 }
 
 public static class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{
  public void reduce(Text key,Iterable<IntWritable> values,Context context)
  throws IOException,InterruptedException{
   int sum = 0 ;
   for(IntWritable val: values) {
    sum += val.get();
   }
   context.write(key,new IntWritable(sum));
  }
 }
 
 public int run(String[] arge) throws Exception{
  Job job = new Job(getConf());
  job.setJarByClass(WordCount.class);
  job.setJobName("wordcount");
  

标签:

很赞哦! ()

本栏推荐