您现在的位置是:主页 > 数据库技术 > 数据库技术

Mahout的引擎Taste有什么优点

IDCBT2021-12-23服务器技术人已围观

简介这篇文章主要介绍“Mahout的引擎Taste有什么优点”,在日常操作中,相信很多人在Mahout的引擎Taste有什么优点问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对

这篇文章主要介绍“Mahout的引擎Taste有什么优点”,在日常操作中,相信很多人在Mahout的引擎Taste有什么优点问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Mahout的引擎Taste有什么优点”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

Taste是 Apache Mahout 提供的一个个性化推荐引擎的高效实现,该引擎基于java实现,可扩展性强,同时在mahout中对一些推荐算法进行了MapReduce编程模式转化,从而可以利用hadoop的分布式架构,提高推荐算法的性能。

在Mahout0.5版本中的Taste, 实现了多种推荐算法,其中有最基本的基于用户的和基于内容的推荐算法,也有比较高效的SlopeOne算法,以及处于研究阶段的基于SVD和线性插值的算法,同时Taste还提供了扩展接口,用于定制化开发基于内容或基于模型的个性化推荐算法。

Taste 不仅仅适用于 Java 应用程序,还可以作为内部服务器的一个组件以 HTTP 和 Web Service 的形式向外界提供推荐的逻辑。Taste 的设计使它能满足企业对推荐引擎在性能、灵活性和可扩展性等方面的要求。

下图展示了构成Taste的核心组件:

从上图可见,Taste由以下几个主要组件组成:

DataModel:DataModel是用户喜好信息的抽象接口,它的具体实现支持从指定类型的数据源抽取用户喜好信息。在Mahout0.5中,Taste 提供 JDBCDataModel 和 FileDataModel两种类的实现,分别支持从数据库和文件文件系统中读取用户的喜好信息。对于数据库的读取支持,在Mahout 0.5中只提供了对MySQL和PostgreSQL的支持,如果数据存储在其他数据库,或者是把数据导入到这两个数据库中,或者是自行编程实现相应的类。

    UserSimilarit和ItemSimilarity:前者用于定义两个用户间的相似度,后者用于定义两个项目之间的相似度。Mahout支持大部分驻留的相似度或相关度计算方法,针对不同的数据源,需要合理选择相似度计算方法。

    UserNeighborhood:在基于用户的推荐方法中,推荐的内容是基于找到与当前用户喜好相似的“邻居用户”的方式产生的,该组件就是用来定义与目标用户相邻的“邻居用户”。所以,该组件只有在基于用户的推荐算法中才会被使用。

     Recommender:Recommender是推荐引擎的抽象接口,Taste 中的核心组件。利用该组件就可以为指定用户生成项目推荐列表。

到此,关于“Mahout的引擎Taste有什么优点”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注网站,小编会继续努力为大家带来更多实用的文章!

标签:

很赞哦! ()

本栏推荐